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The opportunity of X-ray double-plane collimation due to forbidden Bragg reflex simulated by 3-beam diffraction has been
studied, both theoretically and experimentally. It has been shown that the double-plane collimation is provided in both Bragg
and Laue cases of forbidden reflex, but in the latter case the degree of the collimation is much higher.

1. Introduction

The majority of modern collimating systems in X-
ray optics provide precise angular collimation of X-
rays in one plane only (see, e.g., [1-3]). This colli-
mation (let us call it horizontal) is produced by Bragg
reflections from single crystals and can be as fine as
40 ~ 107'-1072 arcsec. At the same time the ver-
tical angular divergence of X-rays is usually confined
by slits, pinholes or X-ray mirrors (see review [
and has an order no less than 102-10° arcsec. That
suits well for most of the experiments.

However, the progress in X-ray optics has recently
been primarily related to non-coplanar cases of X-
ray diffraction, such as multiple diffraction [4-7],
surface- (grazing incidence) [8-10], back- [11,12]
and surface back diffraction [13]. The precise exper-
iments in these geometries require that the incident
beam be collimated in both mutually perpendicular
planes with an accuracy 60 < 1” (< 10~° rad). More-
over, the degree of X-ray monochromatization must
be high too: d4/4 < 10~ because the dispersion de-
pending on 4/ cannot be compensated in the ma-
Jority of such experiments.

The above-listed requirements can be met only
with an additional Bragg reflection in the second
(vertical) plane.

The most straightforward solution of the problem,
offered in refs. [7,14], consists in using three Bragg
monochromators (Fig. 1a). Crystal 1, mounted hori-
zontally, collimates X-rays in a vertical plane. To pre-
vent the deviation of the beam path from the horizon-
tal plane this crystal must be grooved [15] with an
even number of Bragg reflections in the groove. The
second crystal, mounted vertically, eliminates the hor-

1 Corresponding author, present address: HASYLAB,

DESY, 22603 Hamburg, Germany.

izontal beam divergence. At last, the third crystal is
also placed vertically in the (+n, +m) non-parallel
Bragg position with respect to the second crystal. This
crystal cuts a narrow interval 64/ to eliminate the
beam divergence caused by dispersion *! .

Evidently, the multi-crystal monochromator is
rather intricate and requires a careful adjustment.
Therefore, it is desirable to obtain the horizontal and

#1 In ref. [7] the third monochromator was erroneously
leaved out.

a)

b)

Fig. 1. X-ray double-plane collimation systems: (a): with
two-beam reflections from three crystals, (b): with six-beam
Borrmann effect, (c): with three-beam simulation of forbid-
den reflex (Renninger effect). 1,2,3: collimating crystals. In
(c): 3,4: the analyzer and detector in our experiment.
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the vertical collimation simultaneously with the help
of one crystal by using multiple diffraction. But the
problem is that such a multiple diffraction case should
be employed when the X-ray beam leaves the crystal
in the multiple diffraction point only and does not
leave in the other angular domains where the multiple
diffraction splits into two-beam components.

As far as we know, only two schemes of multiple
diffraction collimation have been proposed.

One of them is based on the six-beam Laue-case
diffraction in a thick crystal [5,6]. In view of the fact
that the six-beam anomalous transmission effect is
many times stronger than the two-beam one, the X-
rays leave the crystal only in the angular domain of
six-beam Borrmann effect. As a result, a double-plane
collimation is produced (see Fig. 1b). The complete
device includes also a second crystal mounted verti-
cally in two-beam Bragg position to cut a narrow 61/A
interval. We appreciate this nice idea but consider
that the complexities related to six-beam Borrmann
effect implementation (e.g. thermal instability) make
its wide practical application uncertain.

Another way of the double-plane collimation sug-
gested in refs. [16-19] is based on a forbidden Bragg
reflection simulated by multiple diffraction (the Ren-
ninger effect [20]). Taking into account that the for-
bidden reflex is excited in the multiple diffraction do-
main only, the respective X-ray beam is collimated
in two planes*?. The complete collimator is to be
equipped with the second vertically mounted two-
beam monochromator for the elimination of disper-
sion (Fig. 1c).

A “forbidden” collimator has been used in ref. [24]
for the grazing incidence diffraction studies. In ref.
[25] we have carried out a rough measurements of
collimation parameters for this type of collimator.

It should be noted that the theoretical studies of
the “forbidden” collimator bring some contradictory
conclusions. In particular, the calculations of the col-
limation parameters in two-beam approximation in
refs. [17,18] predict a small beam divergence in both
planes. On the contrary, the three-wave computations
[19] show long tails in the angular distribution. The
precision of the experiment [25] is not enough to re-
solve these contradictions.

#2 The coplanar case of Renninger effect was analyzed in
refs. [21-23]. In this case the incident X-ray beam and
all the reciprocal lattice vectors are coplanar and the de-
viations of X-rays from this plane as large as ~ +10’
have minor effect on the multiple diffraction. Therefore,
the precise vertical collimation is not achieved. But, on
the other hand, the coplanar case is very sensitive to
variations of dA/A and produces X-ray monochromati-
zation with an accuracy of §4/4 ~ 10-5.

Taking into account this uncertainty and consid-
ering the Renninger effect to provide the simplest
method of X-ray double-plane collimation we carry
out a detailed experimental and theoretical study of
the effect. This work is also aimed to give some rec-
ommendations for applications of the “forbidden”
monochromator.

In section 2 the effects of the vertical and the hori-
zontal dispersion in the “forbidden” monochromator
are discussed and a way for their elimination is pro-
posed.

In section 3 the experimental procedure is de-
scribed and the experimental results are presented.

In section 4 we compare the experiment with
the computations based on the three-wave dynami-
cal diffraction theory and discuss the ways to opti-
mize the collimation produced by the “forbidden”
monochromator.

2. Dispersion analysis
2.1. Procedure of the Renninger effect implementation

To facilitate the following discussion let us briefly
overview the Renninger effect.

As known (see, e.g., ref. [27]), the scattering am-
plitude Fj, of X-ray reflection from the crystal planes
with a reciprocal vector A is proportional to the fol-
lowing sum over all atoms in a crystal unit cell:

Fy~ > S exp(=iw D) exp(ib - r) . (1)
i

Here £,”) and r'”) are the amplitudes of X-ray scatter-
ing by the ith atom and the coordinate vector of the
atom in the unit cell, respectively and exp(—i Wh(’))
Debye-Waller factor.

Due to crystal symmetry the terms in the sum (1)
can cancel each other for some reflex, so as F, becomes
zero or nearly zero. This reflex is known to be called
“forbidden” [20].

Following Renninger the forbidden reflex can be
simulated with the help of multiple diffraction by the
following procedure (see Fig. 1c, Crystal 1). At first,
rotating the crystal around a vertical axis we set it
under the Bragg angle for the forbidden reflex 4 ;. Then
keeping 6 fixed and rotating the crystal around k,, one
can bring into the diffraction position an additional
reflex h;. In this case the X-rays, diffracted by planes
with h, strike the exact Bragg condition for the planes
with k3 = h,—h; and leave the crystal in the direction
of K, the diffracted wave vector being h,. Thereby,
the multiple diffraction simulation of the forbidden
reflex h; is realized.
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2.2. Effect of X-ray wavelength variations on multiple
diffraction point

For simulation of A, reflex the X-ray beam must
simultaneously satisfy the Bragg conditions for A and
h,. Therefore the direction of the incident wave K,
of a given wavelength 1 is fixed with respect to both
the angles 6 and ¢ and the diffracted beam K, is col-
limated in double planes.

However, a non-monochromatic X-ray beam still
remains uncollimated because the angular position of
the multiwave point varies with the wavelength.

To find the variations of # and ¢ with 4 we can
use the formulae from refs. [21] or [28]. Particularly,
the following relation was obtained in ref. [28] from
the requirement for the incident wave to satisfy two
Bragg conditions for A; and h,:

h3—h, - h, 2)
2hy, cos@ 7’

where h,, is the projection of 4, on the plane normal
to hy, ¢ is the angle between A, and the projection of
K, on the same plane (¢ = 0 in the coplanar case).
Taking into account the conditions:

cosg =

(2/2)sin@ = hy (Bragg's law) , (3)
hy—hy = h;y, (4)
hay = |hy x hy| [hy = |hy x k3| [hy, (5)

we can rewrite Eq. (2) in the following form:
cosp =—tan@(h;- h3)/|(h2 X h3)[
= —tanf/tan6,;, (6)

where 0,3 is the angle between k; and hs3. Applying a
simple geometrical analysis one can find that 6,3 =
180° — Omax ; Omax being the maximum Bragg angle of
reflex A, in the given three-beam configuration (real-
ized in the coplanar case).

Differentiating Eqs. (3) and (6) with respect to
04, we find the variations of 6 and ¢ with A:

80 = —(6A/A)tan¥, (7)
3¢ = (64/A) cotp/ cos’ 8. (8)

As defined above, the angle ¢ determines the verti-
cal deviations of the incident beam projection on the
plane normal to A,. It is easy to see that when A varies
the vector K| itself turns through the angle § 8y which
is less than d¢:

00v = (6A/A) cotg/cosh. (9)

It is convenient to rewrite Eq. (9) in the following
form:

00y = —(6A/A) tan By, (10)

where Ov = arctan(—cotg/cosf) is the effective
Bragg angle characterizing the vertical dispersion of
the “forbidden” monochromator.

d

m{

—_—

)

Fig. 2. Elimination of polychromatic beam double-plane dis-
persion with the secondd crystal. AB: cross section of beam
spread after the first crystal, d8: the horizontal spread lim-
ited by the second crystal, d6y: the related vertical spread.

Thus, the variations of A cause both horizontal and
vertical dispersion. At small §A/A the ratio of vertical
to horizontal dispersion is constant:

R} = 66v/660 = —cotp/sin@. (11)

The derived equations show that if non-monochro-
matic and divergent X-rays are reflected from the “for-
bidden” monochromator they are converted into a fan
of monochromatic rays with linear variation of the
wavelength from ray to ray and the slope RY to the
horizontal plane. However, if the produced beam un-
dergoes a second Bragg reflection eliminating its non-
monochromaticity, then both the horizontal and the
vertical beam divergences are avoided (see Fig. 2).
For this aim an additional vertically set monochro-
mator in the two-beam dispersive Bragg position can
be used.

Using various secondary planes k;, one can vary
R}, and, thereby, the degree of vertical collimation.

3. Experiment

The experimental study was carried out on an au-
tomatized triple- crystal diffractometer equipped with
an additional goniometer for precise scans around
horizontal axis (see Fig. 1c). The X-ray source was
conventional 1.5 kW tube with Cu anode.

Crystal 1 (Ge wafer with (111) surface orienta-
tion) was aligned to (222) forbidden Bragg reflex sim-
ulated by three-beam diffraction (222)/(111)/(133).
This multi-beam configuration was selected from the
other combinations of secondary reflexes simulating
(222) because it provided one of the most intensive
peaks (see, e.g., the diagram in ref. [28]). The ap-
plication of less intensive multi-beam combinations
which could probably provide better collimation was
restricted by the small intensity of the X-ray tube. The
calculated parameters of the used combination were:
6 = 28.140, Ov = 31.37°, 9 = 61.75°, Rx = 1.14.
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Fig. 3. Measured topograph of beam spread after the “for-
bidden” monochromator. Straight line indicates the slope of
the spread fan.

Crystal 2 was mounted in the dispersive Bragg po-
sition with respect to the Crystal 1 to eliminate the dis-
persion in A and, thereby, to produce a double-plane
collimation. The two-beam (220) reflection from Si
wafer cut along (110) was applied. Parameters of the
second reflection were: Bragg angle 8; = 23.65°, rock-
ing curve halfwidth: Q, = 5.1".

Finally, Crystal 3 was set either vertically or hor-
izontally to analyze the angular spread of the beam
formed by the collimating system. The symmetrical
(400) Bragg reflex from Si wafer 6; = 34.57°, Q3 =
3.4" was used.

At the beginning of the experiment a topogram of
the beam spread after Crystal 1 was measured (Fig. 3).
The spots in the figure are the images of the X-ray tube
focus produced by CuK,, and CuK,, characteristic
wavelengths of the X-ray spectrum. The straight line
drawn through the spots has a slope to the horizontal
plane of 1.1 £0.1, which correlates quite well with the
calculated value.

We should note that there are two equivalent
multiwave combinations (222)/(111)/(133) and
(222)/(111)/(331) characterized by the opposite
signs of the vertical dispersion and called IN and
OUT [19]. The measured topographs for these com-
binations give mirror images with respect to horizon-
tal plane in good agreement with the calculations.

The results of the analyzer scans are presented in
Fig. 4. The measured angular spreads of the beam ac-
cording to the figure are: 60 = 11.5”, 50 = 34.5",
669VT = 42.5". The difference between 60N and
d09VT is due to the opposite signs of their vertical dis-
persion and indicates an insufficient monochromatic-
ity of the beam. The matter is that the dispersions of
the Crystal 1 and the analyzer crystal are practically
compensated (the angles v and 65 are close) in the
case IN, whereas in the case OUT the dispersions are
added and the measured curves are wider.

Thus, our experiment has demonstrated that the
proposed system really collimated X-rays in two
planes, but the horizontal collimation was much
better than the vertical one.

In relation to the obtained data the most important
question arose: was the relatively crude vertical colli-
mation attributed to the used multiwave combination
or to the Renninger effect in general? Since our exper-
imental potentialities were limited by low intensity of
X-ray tube, we tried to answer this question theoreti-
cally applying the precise computations based on the
three-beam dynamical diffraction theory and compu-
tation algorithm described in refs. [26,27].

4. Three-beam computations and discussion
4.1. Simulation of the experiment

At first we carried out three-beam computations
for the configuration used in the experiment (see
Fig. 5)*. As can be seen in the picture, the used
three-beam case really provides much better horizon-
tal collimation than the vertical one. Moreover, the
computed topograph in Fig. 5b demonstrates unde-
sirable fine structure in the form of two hyperbolic
“wings” with a gap in the centre between them.

To compare the theoretical and experimental data
the angular distribution in Fig. 5 was integrated over
Ov (dashed line in Fig. 4a) and over # (dashed line in
Fig. 4b). In this case the fine structure disappeared,
but the difference in the collimation values remained:
00™ = 3.0”, 669" = 28.6".

We should note a considerable difference between
the measured and computed horizontal spreads in
Fig. 4a. It is likely due to the dispersion and convo-
lution of reflections from Crystals 1 and 2.

Comparing the vertical spreads in Fig. 4b one can
see that the experimental curve in the case IN has
almost the same halfwidth as the.theoretical one,
whereas the curve OUT is wider. We attribute this
fact to the above mentioned compensation of the
vertical dispersion in the former case.

It should also be noted that the values 46 and
d6v, calculated with approximate formulae given in
refs. [18,19] on the basis of perturbation theory in
two-beam approximation, are considerably underes-
timated: 60" = 3.7" and 66" = 8.4". These
values correlate neither with the experiment nor with
the exact theory. We attribute this mismatch to the
inadequacy of the perturbation theory in the centre of
the multi-beam peak.

#3 The computations assumed monochromatic X-rays and
did not account for the dispersion and convolutions of
rocking curves.
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Fig. 4. Experimental curves of (a) horizontal and (b) vertical spreads of the beam produced by double-crystal monochromator.
1: theoretical curve, 2,3: experiment in cases IN and OUT respectively.
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4.2. Searching for optimal three-beam configuration

To optimize the collimation parameters we carried
out the computations for all secondary planes simulat-
ing (222) Bragg-case reflex in Ge. The dependence of
d6v /6 upon the crystal surface misorientations from
(111) was analyzed too. One of the best combinations
is shown in Fig. 6.

Summarizing these computations we can make the
following conclusions:

(1) Some combinations provide much better
d0v /40 than the case used in the experiment, but in
any case the condition 68v/d8 > 2 is kept.

(ii) All the peaks display the two-wings fine struc-
ture with long tails along the borders of the wings as
reported earlier [26].

(iii) An asymmetrical diffraction geometry can al-
ter 0 and &6y, but cannot change qualitatively their
ratio. This result disproves the statement of ref. [18]
based on the perturbation theory. In some cases it
causes an extension of the gap between the hyperbolic
wings.

Thus, the classical Renninger effect which is the
three-beam simulation of the Bragg-case forbidden re-
flex displays several characteristics impeding its ap-
plication for the fine X-ray double-plane collimation
required in multiple diffraction experiments. Never-
theless, it can be used, for example, in the grazing inci-
dence diffraction studies where somewhat lower ver-
tical collimation is required. Besides, some parasitic
effects, such as long tails, can be eliminated if the Ren-
ninger effect is realized in a grooved crystal.

4.3. Laue case ‘“‘forbidden’’ monochromator

We also analyzed the possibility of X-ray double-
plane collimation with the Laue-case forbidden reflex.
It turned out that at u¢ > 8 the three-beam simulated
Laue reflex can provide the excellent collimation with
d0v /56 ~ 1 without long tails and the central gap (see
Fig. 7).

Though the intensity maximum in this case is by
10'-10? times lower than in the Bragg case, this would
not be a serious disadvantage because the double-
plane collimation experiments, in any case, are feasi-
ble with intense synchrotron radiation.

5. Conclusions

The possibility of X-ray double-plane collimation
with Renninger effect has been analyzed both theoret-
ically and experimentally.

It has been shown that the most effective collimator
is based on three-beam simulation of the Laue-case re-
flex, i.e. is a combination of collimating systems pro-

posed in refs. [5,6] and refs. [17-19]. Its advantage
over the method of refs. [5,6] is in the employment of
three-beam diffraction instead of six-beam one. The
advantage over refs. [17-19] is in the elimination of
undesirable fine structure and long tails.

The contributions of polychromatic dispersion into
horizontal and vertical spread have been determined.

The experiment in general confirms the possibility
of X-ray double-plane collimation with the Bragg-case
Renninger effect. In the Laue case the implementa-
tion of the experiment requires a powerful X-ray syn-
chrotron source.
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